John Nanson Star Splitters Double Star Blog Manzanita, Oregon jnanson@nehalemtel.net

Wilfried R.A. Knapp Vienna, Austria wilfried.knapp@gmail.com

Abstract: Following our series of reports on STT doubles with large delta M, we are submitting measurements of WDS objects which were by chance found nearby in the images taken of the STT doubles. In these cases we did not suspect any issues with the current WDS catalog data, but wanted to make use of existing image material as any double star visited is worth a current measurement.

As a follow up to our STT reports we decided to finish our project with the many double stars found near the STT objects which we investigated. All values are based on WDS data as of August 2016 and are shown in Table 1.

1. Photometry and Astrometry Results

From the available several hundred images taken with iTelescope remote telescopes, we selected the best suited for measurements of nearby objects. The selected images were then plate solved with Astrometrica with URAT1 reference stars with Vmags in the range 10.5 to 14.5mag. The RA/Dec coordinates resulting from plate solving with URAT1 reference stars in the 10.5 to 14.5mag range were used to calculate Sep and PA using the formula provided by R. Buchheim (2008). *Err_PA* is the error estimation for PA in degrees calculated as arctan (Err_Sep/Sep) assuming the worst case that *Err_Sep* points perpendicular to the separation vector. *Mag* is the photometry result based on URAT1 reference stars with Vmags between 10.5 and 14.5mag. *Err_Mag* is calculated as

$$Err_Mag = \sqrt{dVmag^2} + \left[2.5\log_{10}\left(1 + 1/SNR\right)\right]$$

with *dVmag* as the average Vmag error over all used reference stars and *SNR* is the signal to noise ratio for the given star. The results are shown in Table 2.

In the next step we took a closer look at a few objects listed with the WDS V-code indicating physical relationship, comparing the WDS data with the data in the star catalogs available in Aladin/VizieR for positions allowing calculation of proper motion data (Table 3.). Additionally we have one case with a possible third component of BRT 1204 found in an Aladin image, but not listed in the WDS. We were unable to resolve this component in our own images, so we've used the available star catalog data in Aladin/Vizier. Also included is CPM analysis of a possible third component of ES 1585 which is not listed in the WDS, but which we've labeled as C (see Figure 7.).

2. Historical Research, Catalog Comparison and Summary

After researching each object in this report for historical information as well as other interesting material, we decided to include information on the group of stars shown in Figure 1.

WDS ID	Name		RA	Dec	Sep	M1	M2	PA	Con
00049+4554	VYS 1	AB	00:04:55.300	+45:54:52.6	2.9	10.50	10.50	208	And
00049+4540	BU 997	AB	00:04:57.530	+45:40:25.6	3.9	7.64	9.39	337	And
05098+4856	DAM1026	AB	05:09:46.589	+48:56:16.7	6.3	12.30	13.40	346	Aur
05175+3312	CTT 4	AB	05:17:31.709	+33:12:05.9	108.8	7.74	11.73	105	Aur
05175+3312	CTT 4	AC	05:17:31.709	+33:12:05.9	111.6	7.74	10.96	283	Aur
05175+3312	CTT 4	AD	05:17:31.709	+33:12:05.9	94.3	7.74	11.35	271	Aur
05175+3312	CTT 4	AE	05:17:31.709	+33:12:05.9	114.3	7.74	12.27	269	Aur
05187+3331	ES 59	AB	05:18:41.811	+33:31:27.2	13.9	8.46	9.59	10	Aur
05187+3331	ES 2611	AE	05:18:41.811	+33:31:27.2	74.8	8.46	12.13	170	Aur
05410+1620	BPM 151	AB	05:41:00.881	+16:20:07.4	107.3	14.19	14.95	50	Tau
05460+2606	J 1906	AB	05:45:59.000	+26:06:35.9	7.6	12.00	12.00	335	Tau
05461+2605	J 1907	AB	05:46:07.090	+26:05:29.4	9.0	11.00	11.50	234	Tau
05463+2542	BRT 138	AB	05:46:16.410	+25:42:06.0	6.0	8.38	11.20	119	Tau
06312+1656	FOX 147	AC	06:31:09.990	+16:56:19.0	47.3	6.20	11.41	346	Gem
06314+1646	BPM 282	AB	06:31:22.229	+16:45:44.9	73.9	12.79	15.27	324	Gem
06315+1535	BRT1204	AB	06:31:33.911	+15:34:44.9	5.3	10.50	11.50	79	Gem
06420+2528	TDS4042	AB	06:42:00.580	+25:28:10.9	1.7	10.09	11.65	80	Gem
07070+2444	POU2442	AB	07:07:00.510	+24:43:36.9	3.6	12.40	12.60	351	Gem
07285+3437	CBL 24	AB	07:28:30.990	+34:37:04.4	34.1	12.19	14.30	86	Gem
07445+2415	POU2883	AB	07:44:28.929	+24:14:25.7	10.5	12.70	12.90	82	Gem
07455+3431	GRV 740	AB	07:45:35.900	+34:31:04.9	76.0	10.93	11.73	204	Gem
09207+5116	ARN 71	AD	09:20:43.759	+51:15:57.8	231.1	6.19	7.89	52	UMa
12227+0325	CBL 380	AB	12:22:44.440	+03:24:40.1	39.7	14.40	18.00	338	Vir
17525+1530	L 17	AB	17:52:30.762	+15:31:31.0	2.2	10.50	11.20	288	Her
17525+1530	WLY 20	AC	17:52:30.762	+15:31:31.0	38.2	11.90	12.47	122	Her
18477+1029	BRT1310	AB	18:47:43.552	+10:28:01.0	3.9	12.47	12.86	21	Aql
18485+1045	STF2396	AB	18:48:29.152	+10:44:47.4	76.5	8.08	11.25	336	Aql
18485+1045	STF2396	AD	18:48:29.152	+10:44:47.4	199.4	8.08	10.83	36	Aql
18485+1045	STF2396	AC	18:48:29.152	+10:44:47.4	198.5	8.08	10.14	6	Aql
19162+1612	BPM1005	AB	19:16:10.999	+16:12:10.6	73.2	14.02	15.55	267	Aql
19164+1612	BPM1006	AC	19:16:22.748	+16:12:18.6	94.0	14.90	14.80	312	Aql
19164+1612	BPM1006	AB	19:16:22.748	+16:12:18.6	4.2	14.90	16.00	337	Aql
19304+5015	TDT1508	AB	19:30:21.272	+50:14:36.6	2.1	11.45	11.77	207	Суд
19548+0636	J 3032	AB	19:54:55.892	+06:36:53.6	4.0	11.00	13.80	21	Aql
21181+3500	SLE 383	AB	21:18:08.642	+35:00:04.5	15.1	10.49	11.92	58	Суд
21183+3456	BU 289	AC	21:18:18.200	+34:55:36.2	12.7	9.13	13.00	252	Суд
21183+3456	SLE 384	AD	21:18:18.200	+34:55:36.2	43.0	9.13	11.98	190	Суд
21183+3456	FYM 142	AE	21:18:18.200	+34:55:36.2	36.7	9.13	13.50	95	Суд
21183+3456	FYM 142	AF	21:18:18.200	+34:55:36.2	45.7	9.13	14.90	200	Суд
21183+3456	FYM 142	AG	21:18:18.200	+34:55:36.2	68.2	9.13	13.70	272	Суд
21183+3456	FYM 142	DF	21:18:17.678	+34:54:53.7	4.9	11.98	14.90	277	Суд
21183+3456	FYM 142	EI	21:18:21.221	+34:55:33.8	7.1	13.50	15.70	279	Суд
21183+3456	FYM 142	GH	21:18:12.659	+34:55:38.5	4.7	13.70	14.60	81	Суд
21214+4301	ES 1585	AB	21:21:29.143	+43:00:51.0	18.7	10.17	13.60	230	Суд

Table 1. WDS Catalog Data per August 2016 for the Objects Found Nearby STT Doubles with Large ΔM

STT Doubles with Large ΔM – Objects Nearby

Table 2: Photometry and astrometry results for the double star objects nearby the imaged STT objects. Date is the Bessel epoch and N is
the number of images used for the reported values. iT in the Notes column indicates the telescope used with aperture. number of images
and exposure time given. Observation method is "C"

Name		RA	Dec	dRA	dDec	Sep	Err Sep	PA	Err PA	Mag	Err Mag	SNR	dVmag	Date	N	Notes
	А	00 04 55.386	45 54 53.82							11.844	0.043	74.95			_	iT24 0.61m stack
VYS 1	в	00 04 55.260	45 54 51.30	0.03	0.03	2.842	0.042	207.555	0.855	11.792	0.043	74.92	0.04	2015.774	5	5x3s
	A	00 04 57.550	45 40 24.58							7.561	0.040	258.45				iT24 0 61m stack
BU 997	в	00 04 57.411	45 40 28.06	0.03	0.03	3.773	0.042	337.284	0.644	9.512	0.044	62.14	0.04	2015.774	5	5x3s
DAM	A	05 09 46.575	48 56 16.42							12.058	0.119	23.61				iT24 0 61m stack
1026	в	05 09 46.437	48 56 23.10	0.10	0.10	6.817	0.141	348.494	1.188	13.639	0.138	12.54	0.11	2016.108	5	5x3s. SNR B <20
	A	05 17 31.715	33 12 05.30							7.713	0.103	40.42				iT24 0.61m stack
CTT 4	в	05 17 40.092	33 11 37.08	0.12	0.10	108.863	0.156	105.024	0.082	11.517	0.108	26.96	0.10	2016.108	5	5x1s
	A	05 17 31.715	33 12 05.30							7.713	0.103	40.42				iT24 0.61m stack
CTT 4	с	05 17 23.029	33 12 30.56	0.12	0.10	111.908	0.156	283.045	0.080	10.896	0.107	27.92	0.10	2016.108	5	5x1s
	А	05 17 31.715	33 12 05.30		0.10	0.4 515	0.155	0.51 1.50		7.713	0.103	40.42	0.10	0.01.6 1.00	_	iT24 0.61m stack
C1"1" 4	D	05 17 24.186	33 12 07.20	0.12	0.10	94.517	0.156	2/1.152	0.095	11.352	0.108	25.83	0.10	2016.108	5	5x1s
	A	05 17 31.715	33 12 05.30		0.10		0.150			7.713	0.103	40.42		0.01.6 1.00	_	iT24 0.61m stack
CTT 4	Е	05 17 22.704	33 12 03.54	0.12	0.10	113.113	0.156	269.108	0.079	12.454	0.125	14.04	0.10	2016.108	5	5x1s. SNR E <20
	A	05 17 31.715	33 12 05.30							7.713	0.103	40.42				iT24 0.61m stack 5x1s. Additional
CTT 4	F	05 17 32.456	33 11 24.44	0.12	0.10	41.905	0.156	167.177	0.214	12.744	0.125	13.97	0.10	2016.108	5	component F with SNR <20
	A	05 18 41.804	33 31 26.97							8.415	0.105	35.00				iT24 0.61m stack
ES 59	в	05 18 41.985	33 31 40.66	0.12	.12 0.10 1	13.876	0.156	9.388	0.645	9.461	0.106	30.00	0.10	2016.108	5	5x1s
ES	A	05 18	33 31	0.10	0.10	70.070	0.155	1.00.000	0.115	8.415	0.105	35.00	0.10		-	iT24 0.61m stack
2611	в	A 05 18 41.804 B	26.97	0.12	0.10	/8.072	0.156	169.283	0.115	12.738	0.131	12.26	0.10	2016.108	5	5x1s. SNR E<20

Table 2 continues on next page.

STT Doubles with Large ΔM – Objects Nearby

Table 2 (continued). Photometry and astrometry results for the double star objects nearby the imaged STT objects. Date is the Bessel epoch and N is the number of images used for the reported values. iT in the Notes column indicates the telescope used with aperture. number of images and exposure time given. Observation method is "C"

Name		RA	Dec	dRA	dDec	Sep	Err Sep	PA	Err PA	Mag	Err Mag	SNR	dVmag	Date	N	Notes
BPM	A	05 41 00.897	16 20 07.51	-0.12	0.11	107.338	0.1.63	49.948	0.087	14.163	0.126	28.29	-0.12	2016.026	5	iT27 0.7m stack 5x3s. SNR B>20. This object is listed in the WDS catalog with code V -
151	в	05 41 06.605	16 21 16.58	0.11			0.222			15.218	0.139	15.16	0.11			the reason for this may not be common proper motion, see text.
.т 1906	A	05 45 59.003	26 06 35.98	0.06	0.06	7.509	0.085	335.634	0.647	13.510	0.105	13.49	0.07	2016.085	5	iT18 0.32m stack 5x3s.
	в	05 45 58.773	26 06 42.82							13.487	0.100	14.74				nents <20
т 1907	A	05 46 07.103	26 05 29.45	0.06	0.06	a 058	0 085	233 718	0 537	12.607	0.083	24.31	0 07	2016 085	5	iT18 0.32m stack 5x3s.
0 1 2 0 ,	в	05 46 06.561	26 05 24.09	0.00	0.00	9.030	0.005		0.337	13.506	0.107	12.88	.0.0,			SNR for B <20
BRT	A	05 46 16.420	25 42 05.93	0.06	0.06	C 052	0 085	110 095	0 003	8.237	0.070	184.35	0.07	2016 085	5	iT18 0.32m stack 5x3s.
138	в	05 46 16.815	25 42 03.08	0.00	0.00	0.032	0.005	110.025	0.005	11.578	0.078	31.93	.0.07	2010.005		able photometry
FOX	A	06 31 09.970	16 56 18.31	. 10		47.000	0.105	- 4F 71C	. 1.62	6.151	0.070	249.27	0.07	0.15 0.01		iT24 0.61m stack 5x1s.
147	с	06 31 09.157	16 57 04.13	0.10	0.09	4/.282	0.135	345./10	0.103	11.424	0.074	44.64	0.07	2015.281	5	A too bright for reii- able photometry
врм	A	06 31 22.247	16 45 44.72	0.10	0.09	69 013	0 135	222 729	0 112	12.663	0.085	21.65	0.07	2015 281	5	iT24 0.61m stack 5x1s. SNR for B <20. Why this object is listed
282	в	06 31 20.121	16 46 46.61	0.10	0.05	09.013	0.133		0.112	13.401	0.106	13.09	.0.0,	2013.201		clear - most likely is not common proper mo- tion. See text.
BRT	A	06 31 33.911	15 34 44.88	. 10		5 420	0.105		- 410	11.920	0.077	33.31	0.07	0.15 0.01		iT24 0.61m stack 5x1s.
1204	в	06 31 34.278	15 34 46.05	0.10	0.09	5.430	0.135	77.558	1.419	13.215	0.099	15.15	0.07	2015.281	5	SNR for B <20
TDS	A	06 42 00.600	25 28 09.72							10.023	0.071	88.98				iT24 0.61m stack 5x1s.
4042	в			0.08	0.08	-	0.113	-	-		-		0.07	2015.281	5	No trace of a compan- ion. Bogus?
	A														T	iT24 0.61m stack 5x1s. No resolution of both
POU 2442			<u> </u>	-									-	2015.281	5	components. Faintest stars in the used im- age ~13.5mag -> both
	в															components have to be fainter than that
CBI 24	A	07 28 30.634	34 37 06.30	0 13	0 11	_	0 170	_	_	12.231	0.098	26.78	0.09	2015.281	5	iT24 0.61m stack 5x1s. No resolution of B.
000 21	в			0.10	0.11		0.170				-		0.05	2010.201		Faintest stars in the image ~13.5mag

Table 2 continues on next page.

STT Doubles with Large ΔM – Objects Nearby

Table 2 (continued). Photometry and astrometry results for the double star objects nearby the imaged STT objects. Date is the Bessel epoch and N is the number of images used for the reported values. iT in the Notes column indicates the telescope used with aperture. number of images and exposure time given. Observation method is "C"

Name		RA	Dec	dRA	dDec	Sep	Err Sep	PA	Err PA	Mag	Err Mag	SNR	dVmag	Date	N	Notes
POU 2883	A			-									-	2015.291	2	iT21 0.43m stack 2x0.5s. No resolution of both components. Faintest stars in the
	в															components have to be fainter than that
GRV	A	07 45 35.941	34 31 04.45	-0.08	0.10	75.971	0.128	204.172	0.097	10.738	0.102	50.36	-0.10	2015.297	5	iT21 0.43m stack 5x1s
740	в	07 45 33.424	34 29 55.14							11.795	0.106	29.32				
גרס א 71	A	09 20 43.718	51 16 00.07	0 16	0.16	230 374	0 226	51 437	0.056	6.251	0.090	435.84	0 09	2015 376	5	iT11 0.51m stack 5x3s. Both components too bright for reliable photometry. V-coded WDS object. Comparison DWDSS to UPDT1 does
	D	09 21 02.911	51 18 23.68	0.10	0.10	200.071	0.220		0.000	7.880	0.090	318.64		2010.070	5	not support CPM - dif- ference in pm direc- tion is ~6.5° and dif- ference in speed is ~15mas/yr
CBL 380	A B			-									-	2015.456	4	iT24 0.61m 4x1s. WDS V -coded object No reso- lution of A and B - both component fainter than 13.6mag
. 17	A	17 52 30.775	15 31 31.19			0.050	0.100	0.01 070		11.840	0.074	44.16	0.07	0.015 470		iT24 0.61m stack 6x1s.
ц т і	в	17 52 30.623	15 31 32.05	-0.08	0.09	2.359	0.120	291.379	2.922	12.137	0.076	34.81	0.07	2015.476	6	Overlapping star disks
WLY 20	А	17 52 30.775	15 31 31.19	0.08	0 09	38 103	0 120	121 661	0 181	11.840	0.074	44.16	0 07	2015 476	6	iT24 0 61m stack 6x1s
	с	17 52 33.019	15 31 11.19				0.120	121.001	0.101	12.447	0.077	33.60			Ŭ	
STF	A	18 48 29.358	10 44 36.74	-0.06	0.06	82.005	0.085	336.723	0.059	7.869	0.070	399.98	0.07	2015.555	5	iT24 0.61m stack 5x3s. A too bright for reli- able photometry. A shows high speed prop-
2396	в	18 48 27.159	10 45 52.07							11.158	0.071	108.92				er motion resulting in a rapid change also in separation
STF	A	18 48 29.358	10 44 36.74	0.06	0.06	203 176	0 085	4 743	0 024	7.869	0.070	399.98	0 07	2015 555	5	iT24 0.61m stack 5x3s. A too bright for reli- able photometry. A
2396	с	18 48 30.498	10 47 59.22	0.00	0.00	203.170	0.000	1.713	0.024	9.948	0.070	172.62	0.07	2013.333		er motion resulting in a rapid change also in separation
STF	A	18 48 29.358	10 44 36.74	0.00	0.00	000.051	0.005	24.070	0.004	7.869	0.070	399.98	0.07	0015 555	_	iT24 0.61m stack 5x3s. A too bright for reli- able photometry. A
2396	D	18 48 37.260	10 47 23.81	-0.06	0.06	203.651	0.085	34.878	0.024	10.934	0.071	122.12	0.07	2015.555	5	snows high speed prop- er motion resulting in a rapid change also in separation
BRT	A	18 47 43.502	10 27 59.97	0.07	0.07	2 011	0.000	21 224	1 400	12.005	0.104	36.23	0.10	2015 557	F	
1310	в	18 47 43.596	10 28 03.52	-0.07	0.07	J.011	0.039	21.334	1.400	12.929	0.111	21.94	U.10	2013.33/		LIZ4 U.DIM SLACK JXIS

Table 2 continues on next page.

STT Doubles with Large ΔM – Objects Nearby

Table 2 (continued). Photometry and astrometry results for the double star objects nearby the imaged STT objects. Date is the Bessel epoch and N is the number of images used for the reported values. iT in the Notes column indicates the telescope used with aperture. number of images and exposure time given. Observation method is "C"

Name		RA	Dec	dRA	dDec	Sep	Err Sep	PA	Err PA	Mag	Err Mag	SNR	dVmag	Date	N	Notes
BPM	A	19 16 11.013	16 12 10.25	0.06	0.06	73 267	0 0 9 5	267 340	0.066	13.942	0.069	31.11	0.06	2015 555	5	iT24 0.61m stack 5x3s. SNR B <20. This object is WDS listed with V-
1005	в	19 16 05.932	16 12 06.85	0.00	0.00	13.201	0.005	207.340	0.000	15.527	0.104	12.31	0.00	2013.333		to URAT1 does definitely not support CPM
BPM	A	19 16 22.761	16 12 18.55		0.05					15.011	0.088	16.29		0.015 555		iT24 0.61m stack 5x3s.
1006	в	19 16 22.632	16 12 22.90	-0.04	0.05	4./30	0.064	336.870	0.776	16.181	0.146	7.67	0.06	2015.557	5	SNR A <20 and B <10 $$
BPM	A	19 16 22.761	16 12 18.55							15.011	0.088	16.29				iT24 0.61m stack 5x3s.
1006	с	19 16 17.870	16 13 20.75	-0.04	0.05	93.979	0.064	311.441	0.039	15.473	0.103	12.48	0.06	2015.557	5	SNR A and B <20
ייריי	А	19 30 21.270	50 14 36.49							11.515	0.051	90.44				iT24 0.61m stack 5x3s. No resolution of B,
1508	в			0.04	0.04	-	0.057	-	-		-		0.05	2015.632	5	not even a hint of an elongation. Bogus assumed
	A	19 54 55.888	06 36 53.34							12.929	0.056	41.23				iT24 0.61m stack 5x3s. 2MASS positions give 4" separation per 2000.671 but A shows
J 3032	в	19 54 55.998	06 36 57.45	-0.08	0.11	4.425	0.136	21./41	1./61	14.011	0.064	26.68	0.05	2015.569	5	some proper motion in about the opposite di- rection of the PA leading to an increase of sep over time
SLE	A	21 18 08.629	35 00 04.40							10.437	0.050	170.12				
383	в	21 18 09.681	35 00 12.34	-0.03	0.03	15.170	0.042	58.439	0.160	11.916	0.051	89.32	0.05	2015.621	5	iT24 0.61m stack 5x3s
	А	21 18 18.240	34 55 36.41							8.596	0.050	325.33				iT24 0.61m stack 5x3s. Mag A is combined A+B
BU 289	с	21 18 17.239	34 55 32.27	-0.03	0.03	12.988	0.042	251.412	0.187	13.018	0.054	51.97	0.05	2015.621	5	(with 0,8" too close for resolution)
SLE	A	21 18 18.240	34 55 36.41					100.000	0.056	8.596	0.050	325.33	0.05	0.015 0.01		iT24 0.61m stack 5x3s. Mag A is combined A+B
384	D	21 18 17.671	34 54 53.67	-0.03	0.03	43.309	0.042	189.298	0.056	12.075	0.052	83.18	0.05	2015.621	5	(with 0,8" too close for resolution)
FYM	A	21 18 18.240	34 55 36.41	0.00	0.00	0.0 714	0.040	04.014	0.000	8.596	0.050	325.33	0.05	0015 001		iT24 0.61m stack 5x3s. Mag A is combined A+B
142	E	21 18 21.218	34 55 33.84	-0.03	0.03	36./14	0.042	94.014	0.066	14.326	0.064	26.90	0.05	2015.621	5	(with 0,8" too close for resolution)
FYM	A	21 18 18.240	34 55 36.41							8.596	0.050	325.33				iT24 0.61m stack 5x3s. Mag A is combined A+B
142	F	21 18 16.974	34 54 53.25	-0.03	0.03	45.882	0.042	199.836	0.053	15.006	0.076	18.57	0.05	2015.621	5	(with 0,8" too close for resolution). SNR F <20
FYM	A	21 18	34 55 36.41							8.596	0.050	325.33				iT24 0.61m stack 5x3s.
142	G	21 18 12.649	34 55 38.30	-0.03	0.03	68.786	0.042	271.574	0.035	13.977	0.062	29.74	0.05	2015.621	5	(with 0,8" too close for resolution)
FYM	A	21 18 18.240	34 55 36.41							8.596	0.050	325.33				iT24 0.61m stack 5x3s. Mag A is combined A+B
142	н	21 18 13.250	34 55 41.10	-0.03	0.03	61.547	0.042	274.370	0.039	14.913	0.073	19.80	0.05	2015.621	5	(with 0,8" too close for resolution)
SLE	D	21 18 17.671	34 54 53.67							12.075	0.052	83.18				iT24 0.61m stack 5x3s.
384	F	21 18 16.974	34 54 53.25	-0.03	0.03	8.583	0.042	267.195	0.283	15.006	0.076	18.57	0.05	2015.621	5	for Sep and PA seems in error

Table 2 concludes on next page.

STT Doubles with Large ΔM – Objects Nearby

Table 2 (conclusion). Photometry and astrometry results for the double star objects nearby the imaged STT objects. Date is the Bessel epoch and N is the number of images used for the reported values. iT in the Notes column indicates the telescope used with aperture. number of images and exposure time given. Observation method is "C"

Name		RA	Dec	dRA	dDec	Sep	Err Sep	PA	Err PA	Mag	Err Mag	SNR	dVmag	Date	N	Notes
FYM	Е	21 18 21.218	34 55 33.84							14.326	0.064	26.90	0.05	0015 001	_	iT24 0.61m stack 5x3s. SNR I <10. WDS data for Sep and PA seems
142	I	21 18 20.476	34 55 34.30	0.03	0.03	9.137	0.042	272.886	0.266	16.316	0.145	7.51	0.05	2015.621	5	in error. URAT1 values per 2013.532 are 9.357" and 273.66°
FYM	G	21 18 12.649	34 55 38.30	0 03	0.03	7 904	0 042	69 252	0 308	13.977	0.050	325.33	0.05	2015 621	5	iT24 0.61m stack 5x3s. WDS data for Sep and PA seems in error.
142	н	21 18 13.250	34 55 41.10	0.03	0.03	7.904	0.042	09.232	0.308	14.913	0.062	29.74	0.05	2013.021		URAT1 values per 2013.532 are 7.775" and 69.452°
ES	A	21 21 29.283	43 00 52.58		0.05	10.040	0.064		0 101	10.095	0.060	183.92	0.00	0.015 0.01	-	
ES 1585 1	в	21 21 27.946	43 00 40.11	0.04	0.05	19.249	0.064	229.022	0.191	13.745	0.068	34.22	0.08	2015.621	5	1124 U.OIM SLACK 5X3S
ES	A	21 21 29.283	43 00 52.58		0.05	0.0.70	0.000	001 454	0 107	10.095	0.060	183.92	0.00	0.015 (01	-	iT24 0.61m stack 5x3s.
1585	с	21 21 27.661	43 00 32.44	0.04	0.05	26.872	0.064	221.454	0.137	14,651	0,078	21,48	0.06	2015.621	5	triple
ES	в	21 21 27.946	43 00 40.11	0 04	0.05	8 283	0 064	202 174	0 443	13.745	0.068	34.22	0.06	2015 621	5	iT24 0.61m stack 5x3s.
ES 1585 -	с	21 21 27.661	43 00 32.44							14.651	0.078	21.48				potential CPM pair

				,		,	•	•	,				5		ľ				
Name	RA	Dec	Sep "	PA °	TW	M2	pmRA1	pmDec1	e_pm1	pmRA2	pmDec2	e_pm2	Spc1	Spc2	Ap	Me	Date	CPM Rat	Source/Notes
.RN 71 .D	09:20:43.759	+51:15:57.8	231.1	52	6.19	7.89	-36	145		- 37	140					20(8		MDS09207+5116 data per 08/2016
	140.18233500	51.2660410	231.083	51.461	6.1	7.7										2 199	92.8		2MASS. M1 and M2 estimated from J- and K-band
	140.18211780	51.2666283	230.794	51.479			-32.51	140.48	6.13	- 44 . 68	- - - - - - - - - - - - - - - - - - 	5.17			0.2	5	.3.923	CBA	URAT1. PM data calculated from position comparison with 2MASS. Result does not sup- port CPM - difference in pm direction is ~6.5° and dif- ference in speed is ~15mas/yr
	140.18210366	51.2666639	230.811	51.480			- 32 . 42	139.53	5.74	-42.61	12 . 38 . 38	5.74			96.0	50	ю	BBA	SAIA DRI. PM data calculated from position comparison with SMASS. Result does not fully support CPM - some difference in pm direction and speed and Sep/PM >3000yrs
Name	RA	Dec	sep =	° Aq	ŢŲ	M2	pmRA1	pmDec1	e_pm1	pmRA2	pmDec2	e_pm2	Spc1	Spc2	Ąp	a Me	Date	CPM Rat	Source/Notes
BL 38(12:22:44.440	+03:24:40.1	39.7	339	14.4	18	-125	62		-120	54					501	0		MDS12227+0325 data per Octo- ber 2016. CPM well confirmed by URATI and GAIA DRI posi- tions in comparison with 2MASS
	185.68521300	3.4111540	39.702	338.773	13.1	15.5									E.3	2 200	0,795		2MASS. M1 and M2 estimated from J- and K-band
	185.68472560	3.4113497	39.716	338.904	14.48		-127.21	51.17	9.74	-122.86	55.15	9.86			0.2	u 201	3,841	AAB	URATI. PM data calculated from position comparison with 2MASS
	185.68468711	3.4113710	39.731	338,869			-133.04	54.99	5.97	-129.42	58.60	5.97			196.0	a 50	ų	AAA	SAIA DR1. PM data calculated from position comparison with ZMASS. Sep/PM<1000yrs
Name	RA	Dec	"gep"	PA°	ŢŅ	M2	pmRA1	pmDec1	e_pm1	pmRA2	pmDec2	e_pm2	Spc1	Spc2	Ąþ	Яe	Date	CPM Rat	Source/Notes
PM 005 AE	19:16:10.999	+16:12:10.6	73.2	267	14.02	15.55	T	-24		2	8					20(11		WDS19162+1612 data per 08/2016
	289.04583300	16.2029250	73.174	267.228	13.8	15.1									 	2 199	9.803		ZMASS. M1 and M2 estimated from J- and K-band
	289.04589060	16.2028561	73.272	267.419	13.98	15.56	14.22	-17.71	6.06	6.38	-0.59	.00	ņ	<u> </u>	0.2	50	.3.819	222	IRART1. PM data calculated from position comparison with 2MASS desinitely not support CPM. Spc according to B-V color index

Table 3: Catalog research for some objects of specific interest. CPM rating according to Knapp and Nanson 2016

Journal of Double Star Observations

Table 3 concludes on next page.

6
~
0
\sim
1
õ
S
2
a.
>
-
a
2
a
5
2
12
2
52
2
0
4
pv
2
- 2
9
2
2
8
ž
2
00
z
11
a
1
1
2
P
53
\sim
*:
S
e
5
ţ
2
0
Ĥ
.~~,
C \(\)
2
sec
spec
fspec
of spec
s of spec
ts of spec
cts of spec
ects of spec
bjects of spec
objects of spec
ebjects of spec
ue objects of spec
me objects of spec
ome objects of spec
some objects of spec
" some objects of spec
or some objects of spec
for some objects of spec
i for some objects of spec
ch for some objects of spec
rch for some objects of spec
arch for some objects of spec
earch for some objects of spec
search for some objects of spec
esearch for some objects of spec
research for some objects of spec
g research for some objects of spec
og research for some objects of spec
ulog research for some objects of spec
talog research for some objects of spec
atalog research for some objects of spec
Catalog research for some objects of spec
Catalog research for some objects of spec
). Catalog research for some objects of spec
n). Catalog research for some objects of spec
on). Catalog research for some objects of spec
sion). Catalog research for some objects of spec
ision). Catalog research for some objects of spec
lusion). Catalog research for some objects of spec
clusion). Catalog research for some objects of spec
nclusion). Catalog research for some objects of spec
onclusion). Catalog research for some objects of spec
conclusion). Catalog research for some objects of spec
(conclusion). Catalog research for some objects of spec
3 (conclusion). Catalog research for some objects of spec
e 3 (conclusion). Catalog research for some objects of spec
le 3 (conclusion). Catalog research for some objects of spec
ble 3 (conclusion). Catalog research for some objects of spec
able 3 (conclusion). Catalog research for some objects of spec

		Ta	ble 3 (conc	lusion). Co	atalog	resea	ch for so.	me objec	ts of spe	ecific inte	rest. CPA	A rating	accord	ing to	Knap	p an	t Nanson 2	010	
Name	RA	Dec	sep "	PA °	IM	M2	pmRA1	pmDec1	e_pm1	pmRA2	pmDec2	e_pm2	Spc1	Spc2	Ap	Me	Date	CPM Rat	Source/Notes
PM 006 AB	19:16:22.748	+16:12:18.6	4.2	337	14.90	16.00	17	-28									5000		MDS19164+1612 data per 08/2016
	289.09482300	16.2051680	4.199	337.032	14.4										1.3	N 100	2000.319		2MASS. M1 estimated from J- and K-band
	289.09483470	16.2051617	4.120	336.299	14.91		2.99	-1.68	6.27	1.69	-8.62	6.29	>M4		0.5	그 표	2013.819	CCC	URAT1. PM data calculated from position comparison with 2MASS - result does definite- 1Y not support CPM. Spc according to B-V color index
lame	RA	Dec	Sep"	PA°	M1	M2	pmRA1	pmDec1	e_pm1	pmRA2	pmDec2	e_pm2	Spc1	Spc2	Ap	Me	Date	CPM Rat	Source/Notes
3PM .006 AC	19:16:22.748	+16:12:18.6	94.0	312	14.90	14.80	17	-28		m	-18						2001		MDS19164+1612 data per 08/2016
	289.09482300	16.2051680	94.112	311.429	14.4										1.3	Щ Ц Ц	2000.061		2MASS. M1 estimated from J- and K-band
	289.09483470	16.2051617	94.105	311.456	14.91	15.30	5.99	-1.68	6.27	0	0.46	6.07	>M4		0.2	7 12	2013.819	ccc	URAT1. PM data calculated from position comparison with 2MASS - result does definite- 1y not support CPM. Spc according to B-V color index
Name	RA	Dec	"qe2	PA°	ци	M2	pmRA1	pmDec1	e_pm1	pmRA2	pmDec2	e_pm2	Spc1	Spc2	Ap	Me	Date	CPM Rat	Source/Notes
8RT 204 AC	06 31 33.91	+15 34 44.9			10.50		-11	-11									2000		MDS06315+1535 data per 08/2016 for A, C not listed
	97.89127900	15.5791400	11.129	80.372	11.8	15.7									1.3	E S	1997.800		2MASS. M1 estimated from J- and K-band
	97.89128361	15.5790934	11.121	79.583			0.93	-9.76	6.29	-1.05	-1.05	6.29			0.96	бн	2015	22	GAIA DR1. PM data calculated from position comparison with 2MASS - result does definite- 1Y not support CPM
Name	ŁA	Dec	sep"	PA°	IM	M2	pmRA1	pmDec1	e_pm1	pmRA2	pmbec2	e_pm2	Spc1	Spc2	Ap	Ме	Date	CPM Rat	Source/Notes
1585 3C	21 21 27.946	43 00 40.11			13.75	14.65	4.92	-21.21	5.23	6.68	-20.63	5.23						BAC	So far no WDS object. Poten- tial CPM pair even if rather slow PM, but Sep/PM<1000yrs
	320.36640300	43.0112460	8.378	202.112	13.7	14.7									1.3	N H	1998.782		2MASS. M1 and M2 estimated from J- and K-band
	320.36643329	43.0111505	8.358	201.954			4.92	-21.21	5.23	6.68	-20.63	5.23			0.96	БН	2015	BAC	GAIA DR1. PM data calculated from position comparison with 2MASS

STT Doubles with Large ΔM – Objects Nearby

Page 308

STT Doubles with Large ΔM – Objects Nearby

Star	$\mathbf{R}\mathbf{A}$	Dec	Mags	\mathbf{PA}	Sep	1900 +	Ν	Obs
Anon AB	05175	+3312	7.7, 9.5	104.3	$98.\hat{2}7$	97.07	1	$_{\rm JC}$
Anon AC	05175	+3312	7.7, 9.5	282.3	113.57	97.07	1	\mathbf{JC}
Anon AD	05175	+3312	7.7, 9.5	269.9	102.77	97.07	1	$_{\rm JC}$
Anon AE	05175	+3312	7.7.10.	0.268.7	116.24	97.07	1	JC

Webb Society Double Star Circular No. 7 (1998), p. 8

Figure 1. Original observational data for CTT 4.

(Continued from page 299)

CTT 4: This is an interesting multiple star with A, B, C, D, and E components. There's also an additional star not included in the WDS which we've added to our measurements (see Table 1.) because it's closer than the other components and is similar in magnitude (our report identifies that star as the F component). J-F. Courtot published what appear to be the first measures of this multiple star in Webb Society Double Star Circular No. 7 (1998). The measures for the AB, AC, AD, and AE pairs are all labeled as ANON, and all are dated 1997.07 (Figure 1.) The WDS shows first measures for

those pairs with dates of 1940, 1934, 1981, and 1982, respectively (Figure 2.), which is an indication they were culled from photographic plates.

There is no distance published for any of the components, but a check of GAIA found a parallax for the primary of 7.15, which works out to 456 light years (no parallax was listed for the other components). Proper motion data was absent in the most recent GAIA data (I/337), but we found URAT1 had PM data for all of the components, including the star we added as F. (That data is shown at the bottom of Figure 2).

BRT 1204: The WDS lists data for just two components, but Aladin's image (Figure 3.) shows three components, all of which are virtually in a straight line with each other. The third one, however is faint and probably wasn't seen by Barton – the derived visual magnitude from URAT1 J and K values is 15.614. The exposure time for our image of BRT 1204 was too short to reveal the third star, so we turned to the GAIA data in Aladin to get measures. The AC pair measured 11.12" and 79.6°, and the BC pair measured 5.742" and

Figure 2. Aladin image of CTT 4 with WDS and URAT1 data. Note the identification of the F component.

Figure 3. Aladin image of BRT 1204 with the additional component labeled as C.

 81.1° (Epoch 2015.0 for both measures). URAT1 has proper motion data for all three stars, which is shown at the bottom of Figure 3. GAIA has PM data for A (-010.5 -010.9) and B (+015.7 +003.9) which is considerably different from URAT1, but shows no data for the third star. At any rate, there is no evidence of common proper motion between the three stars (see Table 3. for AC evaluation).

There's a marked difference between the first and last position angles shown in the WDS (96 degrees in 1904, 79.2 degrees in 2000), as well as a notable difference between first and last and separations (4.5" and 5.338"). Our measures (Table 2) showed the AB pair with a position angle of 77.558° and a separation of 5.430" (2015.281). In addition, the WDS shows only three observations of the pair.

POU 2883: The WDS lists magnitudes of 12.7 and 12.9 for the A and B components of POU 2883, but in the Aladin image the secondary appears to be at least equivalent in magnitude to the primary, if not brighter (right half of Figure 4.). A look at the 2MASS infrared image clearly shows the secondary to be brighter (left half of Figure 4.), as does a 1993 POSSII.F image. However, 1995 POSSII.F and 2000 POSSII.N images

showed the pair to be very similar in size. But in looking at the URAT1 data we again find the secondary is the brighter of the two stars with an f.mag of 12.764, compared to an f.mag of 12.914 for the primary. The J and K magnitudes in URAT1 follow the same pattern, working out to visual magnitudes of 13.285 for the secondary and 13.351 for the primary. Turning to the UCAC4 catalog, we also find the secondary is brighter with an fmag of 13.027 and the primary with an f.mag of 13.156. (UCAC4 list a Vmag for the secondary of 13.022, but has no Vmag value for the primary). It should also be noted that based on the URAT1 and UCAC4 data, it appears the WDS magnitudes are too bright for both stars. Our attempt to photograph the pair was unsuccessful because the glare from 3.7 magnitude STT 179 limited our magnitude resolution to 12.2.

STF 2396: This is another multiple star, which also includes a high proper motion primary. F.G.W. Struve first measured the AB pair in 1829 at 11.74" and 232.8 degrees. The most recent WDS measure shows a separation of 76.5" and 336 degrees, which is indicative of the high proper motion. In his 1906 Double Star Catalog, S.W. Burnham included a graph showing the

Figure 4. POU 2883, 2MASS IR image on left, Aladin image on right.

primary's motion based on measures from 1825 through 1905 (left half of Figure 5.). STF 2396 also found its way into his 1913 Proper Motion Catalog, which credits B. von Engelhardt with the first measures of the C and D components in 1891. The most recent proper motion from GAIA (bottom right of Figure 5.) shows the primary with motion of +129 in RA and -437.1 in declination. B has motion of +003.7 +006.3, C of 000.2 -009, and D of +004 +007, indicating these are optical components with the possible exception of the similarity in motion between the B and D components. However, a CPM check of those components showed no shared motion.

J 3032: Jonckheere first measured this pair in 1944 at 4" and 30° (top half of Figure 6.). The most recent measure in the WDS from 2000 is 3.991" and 20.8 degrees, which results in a considerable change in position angle and virtually no change in separation. Our 2015.569 measure of the pair is 4.425" and 21.741°. There are only a total of three measures listed in the

Figure 5. STF 2396, S.W. Burnham's PM chart on left, Aladin image on right with WDS and GAIA data.

WDS, so our measure would bring the total to four.

The most recent GAIA data shows the A component with proper motion of -020.3, -059.0 and B with proper motion of -005.5, +033.6, which results in a gradual increase in separation and a northerly shift in position angle. So there's enough individual motion in the two stars to account for the difference between the 1944 measures and the later measures. In fact, Jonckheere's 1944 separation of 4" was most likely too wide. Based on the PM data, this is an optical pair, which is noted in the WDS as well.

The magnitudes shown in the WDS (11.0 and 13.8) are from Jonckheere's 1944 observation. We measured magnitudes of 12.929 and 14.011, which fits the Primotion dec -059 general pattern of Jonckheere's magni- Notes tudes being too bright.

and B components for ES 1585, but_an below it. obvious third star slightly fainter than the

B component is located about 7.5" southwest of B (our photometry recorded a magnitude of 14.651 for that star, which is .9 of a magnitude fainter than the 13.745 we measured for the B component). A check of Espin's catalog entry in the MNRAS for 1917 shows his original observation identified only the A and B components (left half of Figure 7.). We've chosen to include the third component in our measurements, identifying it as C in our table.

The primary of ES 1585 has significant proper motion, especially given the parallax for it shown in

ES 1585: The WDS shows only A Figure 6. Jonckheere's 1962 catalog entry for J 3032 and WDS data from Stelledoppie

GAIA, which works out to 424 light years. URAT1 shows PM data for A of +102.5 +107, for B of +004.2 -021.7, and for the star we labeled as C of +005.8 -020.9. There is enough similarity in the proper motion of the B component and the suggested C component to suggest CPM, which we've shown in Table 3.

2.1 Additional WDS Discrepancies

BPM 151: The WDS assigns a "V" code to this object, which is explained as: "Proper motion or other technique indicates that this pair is physical." The proper motion shown in the WDS for this pair is +004 -

Figure 7. T.E. Espin's original observation record and Aladin image with WDS data.

007 for the primary and +010 +004 for the secondary, indicating the primary has a westward component of motion and the secondary an eastward component of motion. However, URAT1 shows proper motion for the pair of +002 +001.8 and +002.3 +001.6, which is more indicative of shared proper motion. The most recent data release from GAIA does not include proper motion data for either of the components, nor does it include parallax data for either of the pair, which would be helpful. At any rate, the WDS numbers argue against shared motion and the URAT1 rate of proper motion would seem to be too minor to use as a basis for concluding this pair is physical. It's not clear what other technique might indicate a physical connection between the two stars since parallax data is lacking.

BPM 282: This pair also has a WDS "V" code assigned to it, but again the proper motion numbers listed in the WDS are not indicative of shared motion (000 - 006 for the primary, -004 -029 for the secondary). The URAT1 data is even more indicative of a lack of shared motion, with +005.7 -014.5 listed for the primary and - 001.5 -009.5 for the secondary. Again, no proper motion or parallax data numbers are shown in the most recent GAIA data.

There are also discrepancies between the WDS data and our measures for this pair with regard to astrometry and photometry (Table 2). The WDS shows this pair with a separation of 73.9" and a position angle of 324° (2010). Our measures are 69.013" and a position angle of 333.739° (2015.281). The URAT1 data computes to a separation of 69.233" and a position angle of 333.563° (2013.628), while GAIA data results in a separation of 69.244" and a position angle of 333.566° (2015.0). Looking at magnitudes, the WDS shows values of 12.79 and 15.27, whereas we measured 12.663 and 13.401. UCAC4 and URAT1 both have Vmags for the pair of 12.740 and 13.343, so it appears the WDS value for the secondary is too faint by almost two magnitudes, which is also indicated by the Aladin image of BMP 282.

BPM 1005: This is another pair shown with a WDS "V" code and proper motion numbers that are not indicative of shared motion (+001 -024 and +005 -008). Nor does the proper motion data in URAT1 support shared motion, with numbers of +014.3 -017.7 and +006.4 and -000.6 (see Table 3.). And again, no data for either of the pair is shown in the recent GAIA release.

ARN 71: This is the AD pair of 37 UMA. The WDS also list this pair with a "V" code, and in this case the WDS proper motion data clearly shows a shared motion for the pair: -036 +145 and -037 +140. However the URAT1 data is more divergent, showing motion

of -032.5 +140.5 and -044.6 +125.7. We used our CPM spreadsheet to compare 2MASS and URAT1 data, which showed the two components diverging by \sim 6.5° and with a speed difference of \sim 15mas/yr., numbers which argue against shared motion. (See first listing in Table 3.)

TDS 4042: The WDS lists this pair with a separation of 1.7" and a PA of 80°, and shows only one observation for it. However, TDS 4042 B isn't identified by either URAT1 or GAIA DR1. A look at the composite 2MASS J-H-K band image in Aladin shows a faint hint of an elongation, but at the wrong PA (~230°), and again no catalog object for B is identified in 2MASS. That elongation essentially disappears when individual J, H, and K band FITS images in Aladin are looked at closely. Nor is any elongation apparent in a 1949 POS-SI.O image or in a 1996 POSSII.J image (both FITS images). Given the 1.7" separation and the close magnitudes (10.09 and 11.65) of the two stars it would seem a definite hint of elongation should be present, so it appears TDS 4042 is likely a bogus object.

TDT 1508: This pair is listed in the WDS with a separation of 2.1" and a PA of 207° and also with just one observation. Here again, no object for TDT 1508 B is identified in either URAT1 or GAIA DR1, although the latter catalog shows an object at a position angle of 273° with a separation of 4.736". The only magnitudes available in GAIA for the two objects are G magnitudes of 11.16 and 16.103, which at least from a magnitude differential standpoint differs considerably from the WDS magnitudes of 11.45 and 11.77. The composite 2MASS J-H-K band image in Aladin shows a slightly more defined elongation at a PA of about 285° and a separation of about 4.8". A look at the individual J, H, and K band FITS images in Aladin clearly show the elongation at 273°, but not the 285° elongation mentioned above, nor at the 207° position shown in the WDS. The 273° to 275° elongation is quite pronounced in both 1953 POSSI.O and 1988 POSSII.J FITS images in Aladin. We found a hint of the GAIA object at 273° by stacking two 5x3s images to 10x3s and measured a quite faint 15.6 magnitude star at the position in question. With SNR values of <10 and >5for the two stacked images, our measure is not very reliable, but nevertheless it's obvious there's an object at the 273 degree location.

Here again, given the similar 11.45 and 11.77 magnitudes of this pair in the WDS, if an object was present at the WDS position of 207° and 2.1" separation, the elongation should be apparent in Aladin images. On the other hand, the object at 273° offers the possibility of a companion not identified previously.

POU 2442: The WDS lists this pair with magni-

tudes of 12.4 and 12.6 separated by 3.6" with a PA of 351°. We were unable to resolve either of the components during our imaging. The faintest stars visible in our images were in the 13.5 magnitude range, leading to the possibility that both stars are fainter than that, and a check of various catalogs tends to support that possibility. 2MASS lists J and K magnitudes for both components which convert to visual magnitudes of 14.300 for the primary and 14.340 for the secondary. UCAC4 shows a Vmag for the primary of 13.43, but has no Vmag for the secondary; however it includes f.mags for both components, showing the primary at 14.073 and the secondary at 14.376. GAIA lists only Gmags for the pair, 13.835 for the primary and 14.143 for the secondary, and URAT1 identifies the primary only, listing it with a Vmag of 13.449.

DAM 1026: The WDS shows a separation for this pair of 5.4" and 346° (2010), but our efforts resulted in slightly different numbers of 6.817" and 348.494° (2016.108). URAT1 data computes to a separation of 6.258" and a position angle of 344.345 (2013.596) and GAIA data results in a separation of 6.260" and a position angle of 344.473° (2015.0).

FYM 142 DF: There's a significant discrepancy between our measures for this pair and the WDS data. The latter measures, dated 2012, show FYM 142 DF with a separation of 4.9" and a position angle of $277^{\circ}_{-}(2012)$, whereas our measures (2015.621) show the separation at 8.583" and the position angle at 267.195°. URAT1 data (2013.558) for this pair of stars shows a separation of 8.587" and a PA of 267.672°, while GAIA (2015.0) data shows a separation of 8.588" and a PA of 267.662.

FYM 142 EI: We also found some discrepancy between the WDS data and our measures for this pair. The WDS lists the pair at 7.1" and 279° (2012), while our measures are 9.137" and 272.886° (2015.621). Both the URAT1 and GAIA data show slightly larger numbers than ours: URAT1 data computes to 9.357" and 273.660° (2013.532) and GAIA's data comes out to 9.352" and 273.827° (2015.0).

FYM 142 GH: Here again we found significant discrepancy between the WDS data and our measures. The 2012 data shown in the WDS shows a separation of 4.7" and a position angle of 81°, while our measures show the separation at 7.904" and the position angle at 69.252° (2015.621). Again, the URAT1 and GAIA data result in measures similar to ours: URAT1 data computes to 7.775" and 69.452° (2013.554) and GAIA data results in measures of 7.789" and 69.409° (2015.0).

Acknowledgements

The following tools and resources have been used

for this research:

- Washington Double Star Catalog as data source for the selected objects
- iTelescope: Images were taken with
 - ◊ iT24: 610mm CDK with 3962mm focal length. CCD: FLI-PL09000. Resolution 0.62 arcsec/pixel. V-filter. Located in Auberry. California. Elevation 1405m
 - ◊ iT11: 510mm CDK with 2280mm focal length. CCD: FLI ProLine PL11002M. Resolution 0.81 arcsec/pixel. B- and V-Filter. Located in Mayhill. New Mexico. Elevation 2225m
 - ◊ iT18: 318mm CDK with 2541mm focal length. CCD: SBIG-STXL-6303E. Resolution 0.73 arcsec/pixel. V-filter. Located in Nerpio. Spain. Elevation 1650m
 - ◊ iT21: 431mm CDK with 1940mm focal length. CCD: FLI-PL6303E. Resolution 0.96 arcsec/pixel. V-filter. Located in Mayhill. New Mexico. Elevation 2225m
- AAVSO VPhot for initial plate solving
- UCAC4 catalog
- URAT1 catalog
- Aladin Sky Atlas v9.0
- SIMBAD, VizieR
- 2MASS All Sky Catalog
- GAIA DR1 catalog
- AstroPlanner v2.2 for object selection. session planning and for catalog based counterchecks
- MaxIm DL6 v6.08 for plate solving on base of the UCAC4 catalog
- Astrometrica v4.9.1.420 for astrometry and photometry measurements

References

- Argyle, R.W.; Courtot, J.F.; Kaznica, J.J., 1998, The Webb Society Double Star Section Circulars No. 7, pg. 8.
- Buchheim, Robert, 2008, "CCD Double-Star Measurements at Altimira Observatory in 2007", *Journal of Double Star Observations*, 4, 27-31.: Formulas for calculating Separation and Position Angle from the RA Dec coordinates given as

$$Sep = \sqrt{\left[\left(RA_2 - RA_1\right)\cos\left(Dec_1\right)\right]^2 + \left(Dec_2 - Dec_1\right)^2}$$

in radians. and

$$PA = \arctan\left[\frac{(RA_2 - RA_1)\cos(Dec_1)}{Dec_2 - Dec_1}\right]$$

in radians depending on quadrant.

- Burnham, S.W., 1906, A General Catalogue of Double Stars Within 120° of the North Pole. Part I, University of Chicago Press, Chicago.
- Burnham, S.W., 1906, A General Catalogue of Double Stars Within 120° of the North Pole. Part II, University of Chicago Press, Chicago.
- Burnham, S.W., 1913, Measures of Proper Motion Stars Made with the 40-Inch Refractor of the Yerkes Observatory in the Years 1907 to 1912, Carnegie Institution of Washington, Washington, D.C.
- Espin, T.E., 1917, "Micrometrical Measures of Double Stars (11th Series) and New Double Stars", *Monthly Notices of the Royal Astronomical Society*, **77**, 236 - 242.
- Hussey, W.J., 1901, Micrometrical Observations of the Double Stars Discovered at Pulkowa Made with the Thirty-Six-Inch and Twelve-Inch Refractors of Lick Observatory, pp. 14 - 16, A.J. Johnston, Sacramento.
- Knapp W. and Nanson J., 2017, "A New Concept for Counter-Checking of Assumed CPM Pairs", *JDSO*, 13, 31 - 51.

- Lewis, Thomas, 1906, *Measures of the Double Stars Contained in the Mensurae Micrometricae of F.G.W. Struve*, Royal Astronomical Society, London.
- Struve, Otto Wilhelm, 1845, Catalogue de 514 Étoiles Doubles et Multiples Découvertes Sur L'Hémisphère Céleste Boréal par La Grand Lunette de L'Observatoire Central de Poulkova, L'Académie Impériale des Sciences, St. Pétersbourg.